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The equations for nonlinear BBnard convection with rotation for a layer of fluid, 
thickness d,  are derived using the Glansdorff & Prigogine (1964) evolutionary 
criterion as used by Roberts (1966) in his paper on non-rotational BBnard con- 
vection. The parameters of the problem in this case are the Rayleigh number 
R = agABd/vK, the Taylor number T = 4d4Qi/v2 and the Prandtl number 
Pr = v / K ,  where a is the coefficient of volume expansion, g the acceleration due 
to gravity, A0 the temperature difference between the horizontal surfaces, v the 
kinematic viscosity, K the thermal diffusivity and Q3 the rotation rate about the 
vertical direction. The asymptotic solution for two-dimensional celIs (rolls) is 
investigated for large Rayleigh numbers and large Taylor numbers. For rolls the 
convection equations are found t o  be independent of the Prandtl number. How- 
ever, the solutions depend upon the Prandtl number for another reason. The 
rotational problem differs from the non-rotational one in that the Rayleigh 
number and the horizontal wavenumber a of the convection are now functions 
of the Taylor number. These are taken to be R N pTa' and a N ATB, where a' and 
p are positive numbers. Thermal layers develop as R becomes large with p or T 
becoming large. The order in which p and T are allowed to increase is important 
since the horizontal wavenumber a also increases with T and the convection 
equations can be reduced in this case. A liquid of large Prandtl number such as 
water has v K .  Since R N O ( l / v K )  and T - O(1/v2) ,  p will be greater than T 
for a given (large) A8 and Q3. Similarly, for a liquid of small Prandtl number such 
as mercury v < K ,  and T is greater than p for a given A8  and Q3. For rigid-rigid 
horizontal boundaries with p large and then T large the p thermal layer has the 
same structure as for the non-rotating problem. As T + co three types of thermal 
layers are possible: a linear Ekman layer, a nonlinear Ekman layer and a Blasius- 
type thermal layer. When the horizontal boundaries are both free the p thermal 
layer is again of the same structure as for non-rotating BBnard convection. As 
T +co a nonlinear Ekman layer and a Blasius-type thermal layer are possible. 

When T is large and then p made large the differential equations governing the 
convection are reduced from eighth order to sixth order owing to a becoming 
large as T + co. There are Ekman layers as T -+ co, when the horizontal boundaries 
are both rigid. The p thermal layers now have a different structure from the 
non-rotating problem for both rigid-rigid and free-free horizontal boundaries. 
The equation for small amplitude convection near to the marginal case is derived 
and the solution for free-free horizontal boundaries is obtained. 

28 F L M  57 



434 J .  C .  Morgan 

1. Introduction 
In  this paper the equations for steady convection are derived using the 

Glansdorff-Prigogine (i 964) evolutionary criterion. Nonlinear overstability and 
the preferred-mode problem are not discussed. The technique of Glansdorff & 
Prigogine is equivalent to a particular form of Galerkin’s method, but as pointed 
out by Roberts (1966)) their evolution criterion contains information which is 
beyond the scope of Galerkin’s method. However, it may be difficult to profit 
from this information in practice. 

In particular, the asymptotic theory for large Rayleigh numbers R is investi- 
gated for two-dimensional cells (rolls). According to Rossby ( i969)  these are the 
preferred cell shapes for steady convection. As in the non-rotational case the 
temperature 8 is expanded as 8 = 8,(z) +P(x) f (x ,  y). For rolls the approximation 
f(x, y) = 2 cos ax is used, where a is the horizontal wavenumber. Notice that the 
full expansions O,(z) and P(x) are used for the vertical direction. A criticism of 
this is that it is both mathematically inconsistent to keep the infinite number of 
z terms and only two x terms and physically unrealistic to attempt thereby to 
keep the boundary-layer structure on the horizontal walls while ignoring the 
narrowness of the vertical ‘plumes’. This point was made by Tritton & Zarroga 
(i967).  One would also expect this approximation to become worse for larger 
Rayleigh numbers. 

However, the above approximation has produced some fairly consistent results 
for non-rotational BBnard convection. Roberts (1966) found that for large 
Rayleigh numbers the Nusselt number N (the ratio of heat actually transported 
across the layer to that which would be conducted if the fluid were immobilized) 
behaved as N N (Rln R)*. The asymptotic laminar solution for infinite Prandtl 
number between rigid-rigid horizontal boundaries has been properly solved by 
G. Roberts (unpublished), who found N N Ri, which is in close agreement with 
bhe approximation method. A slight modification of the approximation method 
gives the preferred mode - that is, the value of the horizontal wavenumber a and 
the planform of the convection pattern which is ‘relatively stable’. This is found 
to be in the same sense as that of Malkus & Veronis (1958). The approximation 
method has been applied to convection generated by heat sources (Roberts 1967). 
Roberts found that the preferred horizontal wavenumber a should increase 
slightly with increasing Rayleigh number. Initially this did not seem to be borne 
out by experiment. Tritton & Zarroga (1967) reported that a decreased rapidly 
with increasing Rayleigh number. Thirlby (1970) attempted to resolve the 
dilemma by solving the full partial differential equations by computer. He 
obtained results in good agreement with those of the approximate method. 
Moreover, in a subsequent series of experiments under Tritton’s direction, 
Hooper (1971) could not repeat the findings of Tritton & Zarroga but found a 
gradual decrease of a as the Rayleigh number is increased. In further support of 
the approximation method P. H. Roberts (unpublished) examined the effect of 
adding an additional term G(z )  cos 2ax to the expansion of the bemperature 8 and 
found little effect on the Nusselt number, even for large Rayleigh numbers. How- 
ever, he only examined large and moderate values of the Prandtl number. The 
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results of the present paper are also in agreement with experimental and 
numerical results. One may also observe that the approximation leads to equa- 
tions closely related to the mean field equations often applied to turbulent 
convection. 

For rotational BBnard convection the relevant parameters are the Rayleigh 
number R = agAOd/uK, the Taylor number T = 4d4R:/v2 and the Prandtl 
number Pr = u/K, where a is the coefficient of volume expansion, g the accelera- 
tion due to gravity, A8 the temperature difference between the horizontal sur- 
faces, v the kinematic viscosity, K the thermal diffusivity, d the distance between 
the horizontal boundaries and !2, the rotation about the vertical direction. The 
dependence of the Rayleigh number and horizontal wavenumber a upon the 
Taylor number is taken to be R - pT"' and a N ATB, where a' and p are positive 
numbers. The asymptotic theory is derived for rolls as the Rayleigh number 
becomes large. %or rolls the convection equations are independent of the Prandtl 
number, but their solution depends upon i t  for another reason. R is large when 
p or T are large and corresponding thermal layers develop at  the horizontal 
boundaries. The increase in R due to an increase in p can be associated with an 
increase in the temperature difference A0 between the horizontal boundaries. 
The increase in R due to an increase in T is required because of the stabilizing 
effect of the rotation R,. For a liquid of large Prandtl number such as water 
v 9 K .  Then since R - O( l /uK) and T - O( l/v2); for a given large A0 and R,, 
p will be greater than T.  For a liquid of small Prandtl number such as mercury 
v g K ,  and for a given A0 and T will be greater than p. Thus the order in 
which p or T are allowed to become large is important. When T is greater than p 
the differential equations of the convection can be reduced from eighth order to 
sixth order because a is also large. In  the case of a liquid of small Prandtl number 
one would expect steady convection to be of smaller magnitude than those in 
a liquid of large Prandtl number. The asymptotic theories for both limits ofp and 
T increasing are dealt with. 

For p large and T increasing, for rigid-rigid boundaries the p thermal layer has 
the same structure as for non-rotating B6nard convection. The interior of the 
liquid is isothermal, that is, the temperature gradient D8, is zero. As the Taylor 
number becomes large the isothermal equation takes the form of a thermal-wind 
equation in which the vertical gradient of the horizontal zonal velocity v is 
balanced by the horizontal temperature gradient. The thermal-wind equation is 
found to have boundary layers of thickness O[l/a(lna):]. As the Taylor number 
becomes large three types of thermal layers are possible. They are (1)  a linear 
Ekman layer, (2) a nonlinear Ekman layer and (3) a Blasius-type thermal layer, 
Case I occurs a t  a higher Taylor number than case 2 and case 2 at a higher one 
than case 3. Case 2 is only briefly discussed. In  case 1 subcritical instability is 
indicated when A is large and small. The Nusselt number decreases as T is 
increased for a given R. In  case 3 subcritical instability is indicated for large A,  
but the Nusselt number increases as T is increased for a given R. When the 
horizontal boundaries are both free the p thermal layer is again of the same 
structure as for the non-rotational problem. As T increases two types of thermal 
layer are possible: ( 1 )  a nonlinear Ekman layer and (2) a Blasius-type thermal 
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layer. Case 1 is not considered. In case 2 no subcritical instability is indicated and 
the Nusselt number increases as T increases for a given R. 

If the Taylor number is large and p is increased the convection equations 
can be reduced from eighth order to  sixth since the wavenumber a is large with T. 
If the vertical velocity W Q a, the equations reduce to the equations for marginal 
convection or close to marginal convection. If W 2 a the equations have thermal- 
layer solutions. For rigid-rigid boundaries there are Ekman layers at  these 
boundaries and an isothermal-wind balance in the interior of the liquid. The 
p thermal layers now have a structure different from non-rotating BBnard con- 
vection. No subcritical instability is found and the Nusselt number decreases as 
T is increased for a fixed R. For free-free horizontal boundaries subcritical 
instability is possible for small A .  The Nusselt number decreases as T increases 
for a given R. 

Small amplitude convection ( W Q a )  close to the marginal caseis investigated 
for free-free boundaries and the results agree with those of Veronis (1959). 

2. The convection equations 

a liquid with rotation 8 = (0, 0, a,) are in tensor form 
For a right-handed system of axes O X ,  0 Y and OZ the equations of motion for 

ap ap au, 
axi axi z+u i -+p -=  0, 

ae ae 
at axi - + ~ i -  = KVW, 

where u is the velocity, X the external force, P the pressure, p the density, r the 
radius vector from the origin, eij3 the alternating tensor, v the kinematic viscosity, 
K the thermal diffusivity and 8 the temperature (see Chandrasekar 1961). 
Now Xi = (O,O,  -9) and p = po(l -a@, where g is the acceleration of gravity, 
a the coefficient of volume expansion, and the temperature 8 is zero at  z = 0. 
Using the Boussinesq approximation, in which the fluid is taken to be incom- 
pressible and the change in density is only taken into account in the buoyancy 
term a8g, equations (2.1) and (2.2) become 

aui/axi = o (2.4) 

and -+u iz= - ~ ( f _ : l , x r 1 2  + a ~ g h i + ~ V 2 ~ i + 2 ~ i j 3 u j ~ 3 ,  (2.5) 
at 3 axi P 

where the extra constant - g is absorbed into the first term on the right-hand side 
in the equation for u3 and where A = (0, 0, + 1). The equations are now put into 
dimensionless form by letting x = x'd, t = t'd, 6 = A66' and u = ( K / d )  u', where 
8 = - A6 a t  z = d. The equations of continuity, momentum and energy are, after 
dropping the primes, 
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ae a8 
at ax, 

Pr- +ui- = V28, 

where R = agAed/vK is the Rayleigh number, Pr = v/K is the Prandtl number, 
T = 4d*Qi/v2 is the Taylor number and ;Eij is the modified pressure. The boundary 
conditions for a rigid boundary are 

8 = 0 at x = 0; u = 0 at z = 0,1; 8 = - 1 at z = 1. 

3. The evolutionary criterion of Glansdorff & Prigogine 

tionary criterion we let 
Following Roberts’s (1 966) modification of the Glansdorff & Prigogine evolu- 

y1 = - (au,/at)2, yr2 = - (ae/at)z. (3.1) 

Integrating (2.6)-(2.8) throughout the volume of the liquid gives 

and (3.3) 

where ui = (u, v, w).  
Keeping close to a stationary state, let ui = uoj + Suj, where 

aujlat = a ( s q / a t ,  

aelat = a(se)lat. and 8 = 8, + 60, where 

Ignoring first-order and higher-order quantities in Suj and 68 the integrals (3.2) 
and (3.3) become 

and 

and (3.7) 

Ql and Q2 are called the local potentials. 
The evolutionary criterion states that since Y1 and Y2 are negative the local 

potentials Q1 and Q2 take a minimum value at  a stationary state. It can be 
verified that the variational equations 

= o  
u=u0. e=e, 
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do in fact reduce to the steady-state form of (2.7) and (2.8). For a rotating fluid 
the velocities can be expressed after dropping the primes as 

(3.9) 

where < = (&/ax) - (au/ay) is the vertical component of vorticity (Chandrasekar 
1961, p. 24). Also af2 = d2a2 and < = (K/d)<‘. Owing to the periodicity in the 
x, y plane, w, 0 and 6 are expanded as Fourier series. The first few terms are 
written as 

w = W(z)f(x,y), 5 =  -W)f(x,y), 0 = @,(x)+m)f(X,Yf, (3.10) 

where f(x, y) is the planform or cell shape in the horizontal plane and satisfies 
the equation 

ay ay 
8Y2 

@+- = -uy. (3.11) 

Thus the velocities become 

where D = d/dz. 
Equations (3.12) are now substituted into (3.6) and (3.7). Horizontal averages 

are taken and are denoted by angular brackets. f is normalized so that (f 2, = 1. 
Also (w) = (c) = 0 and (0) = 0, (z )  since ( f )  = 0. i(f3) is denoted by C. CD, and 
CD2 then become 

+TB[Z,DW-ZDW,] - (C/P,) [~DW(DWo)2-$Z;DW+ 22,ZDWO 

+ WOO% 0 2  W + 2, W0DZ + a2WWoDWo + 2a2Wi D W ] )  dz (3.13) 

and Pr C D ~  = { i [ ( ~ 0 , ) 2  + ( D F ) ~  + C c 2 ~ 2 1  

- [Bo,D(WoB)+F~W~DB,+CFo(PDW,+2W,DP)])d~. (3.14) 

The calculus of variations is now used to minimize 0, and CD2 with respect to the 
functions W ,  F, 8, and Z a t  the stationary state W = W,, F = F,, 8, = Boo and 
Z = 2,. After dropping the suffix zero, CD, gives for the stationary state 

(D2 - a2) Z = - T+D W + (C/Pr)  ( WDZ - ZD W) 

(D2 - a2)2 W = Ra2F + - [ WD(D2 - u2) W + 2DW(D2 - a2) W ]  

(3.15) 

C 
Pr 

and 

Pr C D 2  gives 

3 c  
(3.16) 

Pr 

028, = D ( F W )  (3.17) 

+ - ZDZ + TBDZ. 

and ( 0 2  - a2) F = WD8, + C(PD W + 2 WDF).  (3.18) 
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0 

a, A 

FIGURE 1 

For rolls C = 0 (Roberts 1966), and (3.15)-(3.18) reduce to  

DO, = - N + P W ,  (3.19) 

1 
N = l + / g ~ W d z ,  (3.20) 

and 

(02- a 2 ) ~  = me, , ,  
(D2-a2)Z = -T*DW 

(D2 - W = Ru2F + T-hDZ, 

(3.21) 

(3.22) 

(3.23) 

where the Nusselt number N is it constant. The boundary conditions are 
(Chandrasekar 1961, p. 90) 

W = F = O a t z = O , i ;  B = O a t z = O ;  8= - 1 a t x = l .  

At  a rigid boundary z=o, D W = O .  

At a free boundary DZ = 0,  D2W = 0. 

Eliminating F and Z from the nonlinear equations (3.21)-(3.23) gives 

(D2- a2)3 W + TDZW = Ra2(D2 - a2) F = Ru2WD8,, 

Or (D2-a2){W-2[(D2-u2)3 W+TD2W+NRaZW]) 

Also, from (3.19) and (3.20), 
= (D2--2)3 W+TD2W. 

-[(D2--a2)3 W+TD2W]dz = -Ra2. s,’ k 7  

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 
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4. The asymptotic theory for rolls ( R  + co) 

(3.19)-(3.23) give for the vertical velocity W 
For cell shapes which have C = 0, when N = 1 and DO, = - 1 equations 

(D2-a2)3 W+TD2W = Ra2W. (4.1) 

This is the equation that governs the onset of marginal convection. Niiler & 
Bishopp (1965) solved (4.1) as T -+ co for rigid-rigid boundaries. They assumed 
that the exchange of stabilities is true for marginal convection in liquids of large 
Prandtl number. They found that 

R N pmT%, a N AT& (4.2) 

and pmA2 = ++A6- (2J2/A2TA) +O(T-&). (4.3) 

Thus as T-tco let R N pTa', a - ATP, (4.4) 

where a' and p are positive constants. Thermal boundary layers develop as R 
becomes large when p or T becomes large. The order in which p or T are allowed 
to  increase is important as already stated. For marginal convection when the 
horizontal boundaries are both free the asymptotic theory as T --f co gives 

R N pmT3, a N AT& (4.5) 

and pmA2 = ~T~+A~+O(T-B).  (4.6) 

The term of O(T+) in (4.3) is the contribution from the Ekman layers. 

5. The solution of the convection equations for rigid-rigid boundaries 
for the limits p 3 co, T -+ co 

5.1. T h e  p convection 

For R large ( ~ 3 0 0 )  and taking D N 0(1) the dominant terms in (3.28) are 

[D2 - d l 3  W + TD2 W N NRa2(D2 - a2 )I w. (5.1) 

This equation could have been obtained from (3.27) by letting DO, = 0, that is, 
FW = N .  It is therefore the equation representing isothermal flow. For p - t c o  
the dominant terms in (5.1) are D6W and NRa2D2/W. A solution at  z = 0 satis- 
fying these terms and the boundary conditions W = DW = 0 at  z = 0 is 

W N (NRa2)4z2(1nz-l)*. (5 .2 )  

Therefore, setting z = €7, where e is the boundary-layer thickness, W becomes 

W N 

Therefore in the full equations (3.28) let 

W N (NRa2ln e-1)-2 €2 
In e-1 

(5.3) 

(5.4) 

Taking e4T -+ 0 and $a2 -+ 0 as p -+ 00 the equation for f is 

D2[f-2(DY+ e6NRa2f)] = (e6NRa2 In e-l) DY+ O( 1/ln e-l), (5 .5)  
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where D = d/dy. If E6NRa21ns-l = 1 then (5.5) gives 

D2( f -2DD"f) = DGf, (5.6) 

with f = Df = DY = 0 at 7 = 0 and f+y2 as n-+co. The boundary condition 
D Y  = 0 a t  7 = 0 follows from (3.22) and (3.23). 

Integrating (5.6) twice gives 

D Y =  f 2 D " f ( A + B 7 ) f 2 .  

For f + y2 as 7 + co, A and B must be taken to be zero. Thus 

D6f = f "O"f, (5.7) 

with f = Df = D y  = 0 at  7 = 0 and f+@' as 7 - t ~ .  
Since (5.7) has two solutions & (30)4/(7 -yo) the given boundary conditions 

determine a unique solution (Stewartson: see appendix to Roberts (1966)). This 
solution is 

The coefficient of In e-l gives for g 
f = 7 2 .  ( 5 . 8 )  

(5.9) D ' [ T - ~ ( D ~ ~  - y2)] = D6g, 

with g = Dg = D4g = 0 at  7 = 0 and g++y21n7 as 7+m. 
Integrating (5.9) twice gives 

D6g = q4D4g + r2 + ( A  +By), 

where A and B are constants. Since g- t  +q2 In 7 as 7 +m, A and B must be taken 
to be zero. Therefore 

D6g = q4D4g+q2, (5.10) 

with g = Dg = D4g = 0 at 7 = 0 and g-+&72Inr as q-tco. 

convection (Roberts 1966). 
Thus the boundary layer has the same structure as for non-rotating B6nard 

Integrating (3.29) through these boundary layers gives 

+a6 N Ra2, 
k 

e5 In 6-1 

m 

where k = 2s0 F d 7  = 21; (1  +72D4g)d7 = 2.221 

(5.11) 

(Stewartson: see appendix to Roberts 1966). 
From (5.1 1) and the relation e6NRa2 In = 1 it follows that 

6 N 1-619[(Ra2 - a6) In (Ra2 - a6)]-* (5.12) 

(5.13) and N N 0*2782[1- (a4/R)]S [Ra2 In (Ra2 - a6)]*. 

5.2. The T convection 

For T large the wavenumber a becomes large and the dominant terms in (5.1) are 

T D 2  W N NRa2(D2 - a2)/ W + a6 W.  (5.14) 
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This is the thermal-wind equation in which the vertical gradient of the horizontal 
zonal velocity v is balanced by the horizontal temperature gradient. For large a 
(5.14) can be further reduced to the main-stream equation: 

TD2 W N - (NRa4/ W )  + W (5.15) 

A solution of (5.15) at  x = 0 satisfying the boundary condition W = 0 at x = 0 is 

W - (2NRa4/T)6zfln z-1)4. (5.16) 

Substituting z = 757 into (5.16), where r is the boundary-layer thickness of the 
thermal-wind equation (5.14), W becomes 

Therefore in (5.1) or (5.14) let W be 

where f+r  and g+&jJlnq as v+co. 
This results in 

(5.17) 

(5.15) 

(5.19) 

Assuming l/+T + 0 as T -+ 00 and letting 272a2 In 7-l = 1, equation (5.19) becomes 

DY = DY-1, (5.20) 

withf+q as y+co. The solution of (5.20) is 

f = &[57 + (4 + r2)*1, 
giving f = 1 a t  57 = 0. 

The terms in l/lnr-l give for g 

(5.21) 

(5.22) 

with g --f 47 In 71 as 7 -+ co. If (5.22) is integrated twice g is givenjby 

which gives g = 0 at 71 = 0. 
The thickness of the thermal-wind boundary layer is 

7 = I/a(lna)t. (5.24) 

From (5.18) using 2 ~ ~ a ~ l n 7 - ~  = 1, W in the boundary layer cantbe written as 

Thus in the full equations (3.28) let W be 

NRa 

(5.25) 

(5.26) 
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where (T is the thickness of the thermal boundary layer of equation (3.28). Both 
r and (T are functions of T and thus a matching can be carried out between (5 .25)  
and (5.26). Thus in the full equation (3.28) 

where g2u2 is taken to be small as T + 03. 

Three possibilities now present themselves. 
(1) A linear Ekman layer in which 

I J ~ N R u ~ I ~ c T - ~  = 1, a4T = 4; 

therefore u2NRa2/T = 1/41n (T-,. 

(2) A nonlinear Ekman layer in which all terms are of the same order: 

therefore 

I J ~ N R u ~  = 1, ( T ~ T  = 4; 

g2NRa2/T = f. 

(5.28) 

(5.29) 

(3) A Blasius-type boundary layer in which 

(5.30) 

If T,, T,, and T3 are the Taylor numbers for each case, from (5.28), (5.29) and 

(5.31) 

(5.32) 

u6NRa21n (T-, = 1, NRa2a2/T = 1; 

therefore (r4T = l / l n r l .  

(5.3% 

For a given NRa2 (5.31) gives 

NRa2 N T$/ln T,, NRa2 N Tt ,  

T, > T2 > T3. 

NRa2 N Tk(ln T,)*. 

Case 1. The linear Ekman layer. From (5.29) and (5.27) 

Thus the equation for f is 

with f = Df = DGf+4D2f= Oat 7 = Oand f + 1  asr+.co. 

D2[ f p2(DY+ 4D2f)I = 0, 

Integrating (5.34) twice gives 

Doff 4D2f = f2(A + B y ) .  

Since f -+ 1 as 7 --f co, A and B must be taken to be zero. Thus 

D6f + 4D2f = 0, 

with f = Df = D6f+4Dy = 0 at 7 = 0 and f+ l  as q-tco. 

f = l-e-~[cosq+siny]. 
The solution to (5.35) is 

From the terms in 1/1n ( T - ~  is obtained 

0 2  jl)Bg-t24D29 -A) f = 0, 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

withg=Dg=D6g+4D2g= O a t q =  Oandg+Oasr,J+co. 
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Integrating (5.37) twice results in 

(D6g+ 4D2g)/f = 1 + (Ay +B)  [i - e-v(cosy + siny)]. (5.38) 

When integrating (3.29) the integral 

is required. For it to have a 
B = - I .  Its value is then 

c" 
J rl= 

* D6g + 4D2g 
dv 

finite value A must be taken equal t o  zero and 

e-r(cosy+siny)dv = I .  
0 

Substituting (5.26) into (3.29) and integrating through the p thermal layers 
and the Ekman layers gives 

2.2214 21Tt 
€5 In E-1 In T 

+-+a6 N Ra2. 

From (5.39) and the relation s6NRa2 In cl= 1 results 

In T 

(5.39) 

(5.40) 

N N 0.2782 ( I---- a4 ) 'ka21n(RnZ-a6-E)]* In T (5.41) 
R Ra2 In T and 

As E is to be positive, (5.40) gives 

Ra2 2 O(T*/lnT), R 3 O(a4). (5.42) 

Thus R 3 O[T%/(ln T)*], a < O[Tgz/(ln T)B]. (5.43) 

From (5.43)) rPa2 < O[l/T-A(lnT))] and l/r4T 6 O[(lnT)8/T*] justifying the 
assumptions made in $5.2.  The contribution to the integral (3.29) from the 
boundary layer (7) of the thermal-wind equations is 

dy < O[Tz(ln T))], (5.44) 

which can be neglected in comparison wikh terms of O(T~/ lnT) .  In  the main 
stream of the thermal-wind equations W N O[a/u(lna-1)1] and in the Ekman 
layer W - O[l/a(lnrl)l] .  A s p - t c o ,  in the main stream W N O[l/s3 (Ine-1)1] and 
in the p thermal layer W N O( I/€). 

For Ra2 N a6+ (2*TP/lnT), the p thermal layer is much thicker than the 
Ekman layer and the p convection tends to zero. However, the T convection still 
exists. In  this case R = O[T%/(ln T)*] and a = O[TA/(ln T)%], and 

PA' - As+ J2. (5.45) 

Thus, comparing with the marginal stability equation (4.3) gives, for large A ,  
p N A4 and pm - A4; for small A, p N 1/2/A2 and pm N n2/A2. Thus for T + co 
(R-tco) convection exists for values of p which are equal to or less than the 
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values for the marginal case. This suggests the existence of subcritical instabi- 
lities. Notice that, for A small but fixed, a must become large as T -+ co. Rossby 
( 1969) in his experiments found subcritical instabilities for large Taylor numbers. 
The physical reason he gives for this is that, when Ekman layers have formed, the 
bulk of the fluid sees free-free boundaries, which are less constraining according 
to linear theory. Notice that the Ekman-layer contribution to (5.45) affects the 
convection of long wavelength ( A  small). 

From (3.22) the vertical vorticity 2 in the Ekman layer is 

2 N (T/41nr1)9h, (5.46) 

where D2h = -Of. Since P = 0 at z = 0, equation (3.23) gives DY = 4Dh at 
z = 0. From (3.22) and (5.36) 

h = 1 - e-7 cos y. (5.47) 

Case 2 .  The nonlinear Elcman layer. From (5.27) and (5.29), 

1 
(5.48) 

with f = Of = Df+ 4DY = 0 a t  y = 0 and f --f 1 as y -+a. Integrating (5.48) twice 

D6f+ 4D2f+ f = &!'(Of + 4f) + f2(A +By). results in 

Since f + 1 as y -+ 00, A and B must be taken to be zero. Therefore the equation 

(5.49) for f is 

withf = Of = D6f+4D2f= Oaty = Oandf+l asy+oo. 
Equation (5.49) possesses two solutions f = A/A and f = -BIB. If these are 

excluded the four given boundary conditions determine a unique solution to 
(5.49). Integrating (3.29) through the p thermal layers and the nonlinear Ekman 

(5.50) 
2.2214 k layers gives 

~ N Ra2-a6+ - Tp, 

D2 5 (DY+ 4DY+ f )  = $[Pf+ 4DY] + 0 - [ f' 1 (In u-1) 9 

DY+ 4Dy+ f = &,f2(DY+ 4f), 

e5 In e-l 242 

k can be found from numerical solution of (5.49). From (5.50) and the relation 

It is not proposed to take this caae any further as it is similar to case 1 or 3. 
Case 3. The Blasius-type thermal layer. As was pointed out in (5.32), this 

thermal layer occurs a t  a lower Taylor number than does the Ekman layer. 
From (5.27) and (5.30), 

(5.53) 
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From (3.22) the vertical vorticity Z in the thermal layer is given by Z - Tth, 
where D2h = -Of. Since P = 0 at x = 0 equation (3.23) gives DY N Dh/ln rl, 
which tends to zero as T +co. Thus from (5.53) we have 

D2( f -2Do"f) = DY, (5.54) 

with f = Df = D Y =  Oat7 = Oandf-tl  asy-+co. 
Integrating (5.54) twice gives 

Do"f= f2Df+f2(A+B7) .  

Since f + 1 as 7 +a, A and B must be zero. Thus the equation for f is 

Do"f = f ZDY, (5.55) 

withf= Df=D4f=Oatq=Oandf+las7+co.  
Since (5.55) has two singular solutions f = k (30)4/(7 -qo) containing two 

arbitrary constants, the four given boundary conditions determine a unique 
solution. Substituting (5.26) into the integral (3.29) and taking into consideration 
the p thermal layer and the Blasius-type thermal layer yields 

- 2.2214 - RaZ-a6+- k (TInT)Q, 

e5 In 242 
(5.56) 

where k = / S m 9 d 7 = j o m  o f  (DY))"  d7. 

Therefore k is a positive number. From (5.56) and the relation @NRa2Ine-1 = 1 
we have 

and 
a4 

N - 0.2782 I---+-- (T1nT)t] t [Ral ln~a2-a6+- k (TlnT)f)] 4 . (5.58) 
242 [ R 2 4 2  Ra2 

From (5.57), for 8 to be positive 

R 2 O(a4), a 6 O[(TlnT)A]. (5.59) 

Thus, R B O[(TlnT)f], a < O[(TlnT)A]. (5.60) 

Also @a2 < O[(ln T)i%/T*] and 1,h4T < O[(ln T)Y/T*] and tend to zero as T + 00. 
The contribution from the thermal-wind boundary layer is 

(5.61) 

and this can be neglected in comparison with terms of O[(Tln T)Q]. In  the main 
stream of the thermal-wind equation W N O[a/a(ln a-l)*] and in the Blasius-type 
thermal layer W N O[l/~r(lna-~)Q], where - 2i[TlnT]-*. For p-tco, in the 
main stream W N O[l/e3(lne-1)t] and W - O(l/e) in the p thermal layer. The 
p thermal layer is much thicker than the Blasius layer and the p convection tends 
to zero for 

Ra2 - a6 - (k/242) [T In TI$, (5.62) 

i.e. pA2- A6- (k/242). (5.63) 
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In  this case p is not defined for small A .  Subcritical instability is indicated for 
large A. From (5.58), for a given R the Nusselt number increases as the Taylor 
number increases. However, in the linear Ekman layer, from (5.41), the Nusselt 
number decreases as the Taylor number increases. This agrees with Rossby's 
(1969) observations that the Nusselt number reaches a maximum as the Taylor 
number increases for a given Rayleigh number. 

6. The solution of the convection equations for free-free boundaries 
for the limits p --f 00, T -+ co 

6.1. The p convection 

For p -+ 00 equation (5.1) becomes 

(DZ-U~)~  W N NRa2(D2-a2 )/ W ,  (6.1) 

or (0'- W N NRu2/W. (6.2) 

A solution at z = 0 satisfying the boundary conditions W = D2 W = 0 a t  z = 0 is 

23 1 
W N (NRA2)* ( 6 C Z  cz--1n-+ ... 

where c is a constant. c is equal to the value of D W at z = 0 and is independent of 
the wavenumber a, since at  z = 0 the terms a4W and a2D2 W are zero owing to the 
free-surface boundary conditions. Also, from (6.2) c is independent of NRa2, and 
its value can be determined from the numerical solution of 

(D2 - 1)2 w = I/w, (6.4) 

with w = Dw = 0 at z = 0 and z = I (P. H. Roberts, unpublished manuscript). 
Letting z = €7 in (6.3), where E is the boundary-layer thickness, gives 

W N (NRa2)*s ( r3 c~--e21n-+- 1 731n7E2+a.. 
6c E 6c 

Therefore in the full equations (3.28) let W be 

W N (NRa2)* E [  f -pe2 In e-l+ (g/c) c2 + . . .], (6.6) 

with f-+c7,p-+r3/6c and g-+&731n7 as 7+00. 
Thus from (3.28) 

D2[f-2(Dy+ s6NRa2f)] = @NRa2D6f + ~ ( E ~ I ~ E - ~ ) .  

D2( f p2D0"f) = DY, 

(6.7) 

(6.8) 

Taking e4NRa2 = 1 the equation for f is 

with f = 07 = DY = 0 at 7 = 0 and f -+cy as 7 -+GO. Notice that DY = .O a t  
7 = 0 follows from (3.23) since J' = DZ = 0 at x = 0. Integrating (6.7) twice 

we have D T =  f2D4f+f2(A+BY). 

Since f +cy as 7 -+ co, A and B must be zero. The equation for f is then 

D6f = f$Do"f, 

w i t h f = D y = D Y = O a t  =Oandf-+cyasr,J-+co. 
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conditions determine a unique solution to (6.9) : 
Since (6.9) has two solutions f = & (30)t/(y -yo), the given four boundary 

f = c y .  
The terms in e2 In e-l give for p 

D2( f -2D6p) = D6p, 

withp = D2p = D4p = 0 at  y = 0 andp+y3/6c as y-tco. 
Integrating (6.11) twice gives the unique solution 

(6.10) 

(6.11) 

p = ~ ~ 1 6 ~ .  (6.12) 

Prom the terms in e2 the equation for g is 

(6.13) 

with g = D2g = D4g = 0 at 7 = 0 and g+-&731ny as y+m. 
Integrating (6.13) twice and using (6.10) gives 

D6g/C2 = r2D49 - q +?'(A + By). 

Since g+&y31ny as y-+co, A and B must be zero. The equation for g is then 

D6g/c2 = ~ ~ D ~ g - 7 ,  (6.14) 

with g = D2g = D4g = 0 at q = 0 and g -+ +y3 In y as y -+ co. The boundary layer 
has the same structure 8s for non-rotational BBnard convection. The contribu- 
tion from the p thermal layer to the integral (3.29) is 

where 

(P. H. Roberts, unpublished manuscript). 

6.2. The T convection 
There are three possibilities arising from (5.27). 

( I )  A linear Ekman layer in which 

therefore 

a4NRa2 = 1, (r4T = 4; 

a2NRa2/T = $a2. 

(6.15) 

(6.16) 

(6.17) 

Also a6NRa2 = a2. The boundary conditions at y'= 0 cannot be satisfied and 
there is no contribution t o  the integral (3.29). This case is thus of no interest. 

(2) A nonlinear Ekman layer in which 

therefore 

a6NRa2 = 1, a4T = 4; 

a2NRa2/T = 4. (6.18) 

The equation for f is (5.49) with the boundary conditions f = DY = DY = 0 at 
y = 0 andf-t 1 as y -+a. This case will not be considered in this paper. 
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(3) A Blasius-type thermal layer in which 

therefore I cr4NRa2 = 1, NRa2cr2/T = 1; 

&T = g2. 

449 

(6.19) 

T h e  Blasius-type thermal layer. From (5.27) and (6.i9), ignoring terms of order 
u2 and c2a2, the equation for f is 

D"(f-"o"f) = D", (6.20) 

withf = Dy = D4j = 0 at y = 0 andf-+ i as y -+a. 
Integrating (6.20) twice gives 

DY = f2D4f+f2(A +By). 

Since f+ 1 as q --f 00, A and B must be zero. Thus the equation for f is 

DY = f 2D4f, (6.21) 

with f = DY = DY = 0 at 7 = 0 and f -+ 1 as r] +a. Again (6.21) has a unique 
solution for the given boundary conditions. Substituting (5.26) into the integral 
(3.29) and integrating through the p thermal layer and the Blasius-type thermal 
layer gives 

2.21365/e3c2 N Ra2 - a6 + 2ET5, (6.22) 

where 

is a positive number. For c = i, equation (6.22) and s4NRa2 = 1 gives 

e N l*285(Ra2 - a6 + 21cT5)-4 (6.23) 

and N - 0.3663(Ra2 - as+ 2kTlt)t. (6.24) 

From (6.23), for E to be positive, 

R 3 0(a4), a6 < o p ) .  (6.25) 

Thus R 2 O(TQ), a < O(T3).  (6.26) 

Therefore r2a2 < O(T-Q) and ~ / T ~ T  < O[T#(lnT)2]. From the last inequality, for 
~ / T ~ T  to be negligible as assumed in (5.19) a 4 O(!Z'A). The contribution from 
the thermal-wind boundary layer (7) is of O(T/7) < O[T%(lnT)?c] and can be 
ignored in comparison with terms of O(T8). In  the thermal-wind main stream 
W N O(u/a)  andin the Blasius-type thermallayer W N O( l/a), wherer - O(T-4). 
As p+co in the main stream W - O(l/e2) and in the thermal layer W - O(l/e).  
Since a < O(Ti%) there is no possibility of the p thermal layer being thicker than 
the Blasius layer. That is, no such relation as Ra2 - aa- 2kT8 is possible. In  this 
case we conclude there are no subcritical instabilities. From (6.24) the Nusselt 
number increases as the Taylor number is increased for a given Rayleigh number. 
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7. The solution of the convection equations in the limits T - 00 and p -+ co 
From (3.21) and (3.22), since the wavenumber a becomes large as T-tco, and 

taking D2F and D2Z to be O( 1)  in the bulk of the fluid, we obtain 

-a2F - WDB, 

and a2Z - TBD W .  

From (7.1) and (3.19) it follows that 

F - NW/(a2+ W 2 )  

and DB, - -Na2/(a2+ W 2 ) .  

From (7.4) and (3.27) we have 

[D2 - a2I3 W + TD2 W - - [NRa4 W/(a2 + W 2 ) ]  

or (D2-a2)3W+TD2W+NBa2W - - W2a-2[(D2-a2)3W+TD2W] 

The boundary conditions are 

W = D W = Z = 0 at z = 0 , l  

and W = D2 W = DZ = 0 at x = 0 , l  for a free surface. 

for a rigid boundary surface 

F is zero when W is zero. Assuming W B a-that is, finite amplitudes-(7.5) 
reduces to 

Equation (7.7) can be obtained from (3.27) by ignoring the term D2F in com- 
parison with a2F and taking DO, E 0, i.e. P W = N .  It is therefore the isothermal 
equation. If W < a-  that is, infinitesimal amplitudes- (7.5) reduces to the 
marginal equation (4. I). 

(D2-a2)3 W+TD2W N -(NRa4/W). (7.7) 

7.1. Rigid-rigid boundaries 
The T convection (the Ekman layer). As T-too, equation (7.5) reduces to the 
thermal-wind equation 

(7.8) 
NRa4 W 

TD2W N -- a2 + W2 + a6W, 

or 
NRa2 

w2 D2 W + a" W (I + 5). 
a2 T 

D'W+i;- W - -- (7.9) 

For W B a equation (7.8) becomes the thermal-wind main-stream equation 
(5.15). Using (5.16) and (&IS), let W in the thermal-wind boundary layer be 

(7.10) 

where i~ is the boundary-layer thickness and f -+q and g + 47 In 7 as 7 + CO. 

Substituting (7.10) into (7.9) gives 
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where it is assumed that @a6/T + 0 as T -+ co. Letting (2r2NRa2/T) In v-l = 1 
gives for f 

D'f = - f'Do"f, (7.12) 

withf =Oaty=Oandf+?asq-+co.  
The solution of (7.12) is 

f =?.  (7.13) 

The condition Df = 0 a t  z = 0 has to be satisfied in the Ekman layers of equation 
(7.5). From the terms in In v-l the equation for g is 

D2g = f/2(1+ f ') = 7/2( 1 +?'), (7.14) 

with g = 0 at r,~ = 0 and g++r,Ilnq as r,~-+co. 
Integrating (7.14) twice gives for g 

g = ~ ~ I n ( 1 + ~ 2 ) + + t a n - 1 ~ .  (7.15) 

Now for T -+ co the main-stream equation of (7.5) is again the thermal-wind main- 
stream equation (5.15). Substituting (7.10) or (5.18) into (7.6) and denoting the 
Ekman-layer thickness by a (it will be found to have the same thickness as the 
thermal-wind boundary layer) gives 

2v2NRa2 1 
D'f + 4D'f + a'NRa2f = - T In ( r 1 ) f 2 ( D y +  4D2f) + O  - 

Taking (2a2NRa2/T) In v-1 = 1. gives v6NRa21n v-l = 2. Also notice that the 
Ekman layer and thermal-wind boundary layer have the same thickness. The 
equation for f is 

(1 + f 2, (DY+ 4D2f) = 0, (7.17) 

with f = Of = D"f+Do"f= Oat? = Oand f - t q  asn+co. 
The solution of (7.17) is 

f = r , ~  + A  + e-T( - A  cosq + B sin?). (7.18) 

The vertical vorticity Z in the thermal-wind boundary layer (a) is, from (7.2) 
and (7.10), 

2 = (2NRln a-l)* +...I . 
4 In v-1 

In  the Ekman layer let Z be given by 

Z = (2NR In a-l)t + ..*), In v-l 

(7.19) 

(7.20) 

where h -+ 1 and p -+ a[2 + In ( 1 -I- 591 as 7 -+ co. 
Since F = 0 at x = 0, equations (3.23) and (7.20) give v2a2D4f = Dh at 7 = 0. 

Thus as T -+ 00, Dh = 0 a t  q = 0, which is the same boundary condition on the 
vertical vorticity as for a free horizontal boundary. Also (7.2) and (7.18) give 
for h 

h = Df = l+e-~[ (A+B)cosr+(A-B)s in~] .  
29-2 
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Since h =  0 a t  r,~ = 0,  A + B  = -1. Then Dh = 0 at y = 0 gives A = - 1  and 
B = 0. Therefore we have 

f =y-l+e-Vcosq (7.21) 

and h = l-e-V(cosq+siny). (7.22) 

Notice that h-t 1 as 7 -too as it should and Dzf = 0 at 7 = 0, which is also a 
boundary condition a t  a free surface. In  the thermal-wind main stream 

W - O[a/a(lna-l)*] 

and in the Ekman layer W N O(a).  From (7.11) the terms in lna-l give for g 

DGg + 4D2g = 2fl(  1 + f 2) , (7.23) 

with g = Dg = D6g+4D2g = 0 a t  7 = 0 and g + & y l n y  as q-too. 

satisfying W = DW = 0 at z = 0 is 
The p convection. The solution of the isothermal equation (7 .7 )  at z = 0 

(7.24) W - (&NBa4)4 23 (In z-I)+. 

Letting x = €7 in (7.24), where c is the boundary-layer thickness, gives 

Therefore in the p thermal layer let 

(7.25) 

(7.26) 

Substituting (7.26) into (7.6) and assuming that $a2 and c4T tend to zero as 
p+co gives 

1 
D6f+ e6NRa2f = - e6NRa2 ~ 6 In c-l f 2D6f+ 0 ( m) . (7.27) 

Taking e6NRa2 In c-1 = 1 gives for f 

D6f = - f ZDY, (7.28) 

with f = Df = D y  = 0 at 7 = 0 and f -tn3 as q-too. 
Prom (3.23) and (7.2) at 7 = 0, D y  = (e2T/a2) Dh-tO as p- tm.  The solution 

to (7.28) is 

The terms in In 8-l give for g 
f = 73. 

D6g = 6f/(6+f2), 

(7.29) 

(7.30) 

with g= Dg = D4g = 0 a t  7 = 0 and 9 4 7 3 1 n 7  asy-tco. 

thermal-wind boundary layer gives 
Integrating (3.29) through the p thermal layer, the Ekman layer and the 

(7.31) 

where 
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by contour integration and 

wheref = 7 - 1 -k e-7 cos 7. From (7.31) and e6NRa21n e-l = 1, 

Ra2-a6- 11.7082- ")]-' (7.32) 
InT 

and 

From (7.32), for e to be positive, 

R > O(a4) Ra2 > O(T%/lnT); (7.34) 

that is, R b O[Tg/(ln T)*], a < O[Tk/(ln T)Q]. (7.35) 

Thus a2a2 < O[l/TA(lnT)*] and a2aa/T < O(l/T*lnT) and tend to zero as 
T + co. In the p isothermal main stream W - O[a/e3(ln e-l)*] and in the p Chermal 
layer W N O(u). When 

Ra2 - a6+ 11*7082(T%/lnT), (7.36) 

or pA2 - A6 + 11.7082, (7.37) 

the p thermal layer is thicker than the Ekman layer. However, the p convection 
only tends to zero (for a fixed T) when A+O. The T convention also 
tends to zero when A-tO. Comparing (7.37) with (4.3) shows that the value of 
p ( = 11.7082/A2) is greater than pm ( = +/A2). Thus subcritical instability is not 
indicated for small A .  From (7.33), the Nusselt number decreases as the Taylor 
number is increased for a given Rayleigh number. 

If in (7.16) ( 2a2NRa2/T) In a-1= 1 and a2NRa2 = 1 then a6NRa2 = a4 and 
a4T = 2a6Inr1 .  Thus neglecting these terms compared with terms of order 
&a2 gives D Y =  0, D6g = 0, etc., 

and there is no contribution to the integral (3.29). 

7.2. Free-free boundaries 

The T convection. A solution of the thermal-wind equation (7.8) at x = 0 
satisfying the boundary conditions W = D2 W = D4 W = 0 at  z = 0 is 

W -  2-- NRa4 xln ( I  +;) . 
6T 

(7.38) 

Therefore Ekman-layer solutions of the full equations (7.5) are not required. In  
the boundary layer of the thermal-wind equation we have as in (7.10) 

(7.39) 

where r is the boundary-layer thickness. Notice that 7 and g (which is given by 
equation (7.15)) satisfy free-surface boundary conditions. Anticipating the 
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p-thermal-layer results let r2RNa2 = 1 and, as for rigid-rigid boundaries, 
( 2r2NRa2/T) In 7-l = 1.  Thus we obtain 

7 = e- tT.  (7.40) 

The contribution from the thermal-wind boundary layer to the integral (3.29) is 

(7.41) 

where (7.14) has been used. 

satisfying the boundary conditions W = D2 W = D4 W at x = 0 is 
The p convection. The solution at z = 0 to the p main-stream equation (7.7) 

25 
W N (NRa4)& ~z+---11nz-1+ .. ( 120c 

(7.42) 

where c is a constant. Again c is independent of the wavenumber a since the terms 
a2D4W, a4D2W and a6W are zero at x = 0. It is also independent of NRa4, and 
may be determined from a numerical solution of the equation 

with w = D% = D4w = 0 at z = 0 , l .  
On putting z = €7, W becomes 

Thus in the full equations (7.6) let 

W N (NRa4)+e(f +ge41n~-l-pe4+ ...), 

with f + q ,  g- tq5/120c  andp-+q51nq/120casr+co. Thus from (7.6), 

Dy+ s6NRa2f = - e2NRa2f2DY+ 0[~41ne-~]. 

If s2NRa2 = 1 then s6NRa2 = c4 and the equation for f is 

(1+f2)D6f= 0, 

with f = 02f = D y  = 0 at  7 = 0 and f + q  as y-too. 
Therefore 

f = cq. 

(1-tf2)D6g = 0, 
The terms in e4 In e-l give for g 

(7.43) 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

(7.48) 

(7.49) 

g = q5/120c. 

D6p = f/Cl +f 2),  

The terms in e4 give for p 

with p = D2p = D4p = 0 a t  q = 0 and p+ (q3/120c) In q as q -+ co. 

(7.50) 

(7.51) 
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The terms e2a2D4f and s4a4D2f in the first term on the left-hand side of (7.5) or 
(7.6) do not contribute to the boundary layer. Integrating (3.29) through the 
p thermal layer and the thermal-wind boundary layer gives 

n/ec - Ra2 - a6 - netT. (7.52) 

From (7.52) and the relation s2NRa2 = I it follows that 

E - n/c)  [Ra2 - a6 - 7~ e*T]-l (7.53) 

and (7.54) 

From (7.53), for e to be positive, it follows that 

R 2 O(a4), Ra2 3 O(e@'). (7.55) 

Therefore R 2 O(e*T), a < O ( e W ) .  (7.56) 

Also T2a2 < O(e-gT) and a6T2/T < O(e-tT/T),  which justifies the assumptions 
made in equation (7.9). In the thermal-wind main stream W - O[a/7(ln7-l)*] 
and in the boundary layer W - O(a). In thep main stream W - O[a/e] and in the 
thermal layer W - O(a). The p thermal layer is thicker than the thermal-wind 
boundary layer for 

(7.57) Ra2 - a6 + n ,aT, 
or pA2 - A6 + n. (7.58) 

All convection ceases for A + 0 (T fixed) and, comparing with (4.6), this occurs 
at lower values of p ( = n/A2) thanp, (= n2/A2). This indicates the possibility of 
subcritical instability for small A .  The Nusselt number decreases as the Taylor 
number increases for a given Rayleigh number. 

8. The thermal-wind balance 

large Prandtl number, become 
Equations (2.6) and (2.8) for steady motion, neglecting the nonlinear terms for 

a q a x  = v2u + T ~ V ,  (8.1) 

a q a y  = v2v - T+U, (8.2) 

a q a z  = v2w+ RB (8.3) 

and 
au av aw 
ax ay az -+-+- = 0. 

From (8.1) and (8.3) vzr + Tt(av/az) = R (aelax), 

T* ( a v p )  = R (aslax). 

v2g = - T-+ awlax, 

(8.5) 

(8.6) 

(8.7) 

where 7 = (auli3.z)- (awlax). As T+m, equation (8.5) reduces to  

From (8.1) and (8.2) we obtain 
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where 5 = (av/ax) - (&lay). Substituting 

19 = O,+Ff, v = .-2[DW(”f/ay)-z(af/ax)], w = Wf and 5 = Zf 

into (8.6) gives 

For two-dimensional motion in the x, z plane (8.8) reduces to 

Since (azflax2) + (i32f/ay2) = - a”f, equation (8.7) gives 

Thus from (8.9) and (8.10) 

which is of the same form as equation (5.14) after replacing P by N / W .  

(D2 - a2) 2 = - TiDW.  

TD2 W = Ra2(D2 - a2) F ,  

(8.10) 

(8.11) 

9. Small finite amplitude solutions close to the marginal case as T + co 
(W < 4 

This case can be compared with the results of Veronis (1959), who investigated 
solutions close to the marginal case for free-free horizontal boundaries. For 
W < a equation (7.3) gives 

Also, from equations (7.5) [or (7.611, 

F N NW/a2.  (9.1) 

(9.2) (D2 - u ~ ) ~  W + TD2 W + NRa2 W N NRW3, 

or (D2--2)3 W+TD2W+R,a2W N (R0a2-NRa2) W+NRW3,  (9.3) 

where R, is the Rayleigh number for the marginal case and is given by 

R0a2 = (m2 + u ~ ) ~  + r2T.  (9.4) 

Now let W = W, + W,, where W, < W,. Substituting into (9.3) gives 

(0’- a2)3 W, + TD2Wl + R0a2W, = R0a2W, - NRa2W, + N R  W:, (9.5) 

where W, satisfies the marginal equation (4.1). 

9.1. The solution for  free-free boundaries 

I n  this case W, is given by 
W, = A C O S ~ Z ,  

where A is the amplitude and the boundaries are z = 5 4. Therefore 

W ;  = A3 C O S ~  nz = A3($ cos T Z  + 4 cos 3 7 ~ ~ ) .  (9.7) 

Substituting (9.7) into (9.5) gives 

(B2 - C A ~ ) ~  W, + TD2WI + R,a2W, 
= ( $ A 2 N R ~ 2 + R o ~ 2 - N R ~ 2 ) A ~ ~ ~ n ~ + $ N R A 3 ~ ~ ~ 3 ~ ~ .  (9.8) 



Nonlinear Be'nard convection with rotation 457 

For a periodic solution the coefficient of cosm must be zero and thus 

This agrees with the results of Veronis (1959) and confirms that, for R close to R,, 
W < a. Letting Wl = B cos 3nz in (9.8) gives 

(9.10) 

F W - - = -  (9.11) 

NRa3 B = - -  
i2347rzT (i-%)'' 

From (9.1) 

a2 3 

From (9.1) 

(9.10) 

(9.11) 

Substituting into (3.20) results in 

N-1 = FWdz = +(N-R,/R). so' 
If N = i +Nl then 

Nl = 2[l- (Ro/R)]. 

Therefore from (9.12) it follows that 

(9.12) 

(9.13) 

(9 . i4)  

Equation (9.14) also agrees with the results of Veronis (i959). For a given R as 
T increases R, will increase (from the value given by (9.4)) until it equals R. Then 
from (9.13) N becomes equal to  1 and (9.9) and (9.10) give A and B tending 
to zero. 

10. Comparison 
Veronis (1  968) numerically solved the partial differential equations for free- 

free boundaries using truncated Fourier representations in the x and x directions 
for the vertical velocities, etc. No horizontal averages were taken. He found there 
was a difference in behaviour of liquids with small and large Prandtl number. 
For large Prandtl numbers there was no subcritical instability and the Nusselt 
number increased for given R/R, (where Re is the critical Rayleigh number) as 
the Taylor number increased. For small Prandtl numbers subcritical instability 
was predicted for Taylor numbers less than or equal to 103'6. These effects he 
considered to be caused by a balance between the rotational constraint and the 
nonlinear inertial terms (C + 0). For larger Taylor numbers the liquid first 
became unstable to infinitesimal oscillatory disturbances, but a steady finite 
amplitude convection was established at larger values of R, which, however, are 
less than the values of R derived from linear theory. He found that the Nusselt 
number decreased as the Taylor number increased for given RIR,. In the present 
paper a complete Fourier series is taken in the z direction, and although only two 
terms are taken in the x direction the asymptotic results are in agreement with 
the numerical results of Veronis. 
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Rossby (1969) carried out experiments with rotating fluids (water and mercury) 
between rigid horizontal boundaries. For water he found subcritical instability 
for large Taylor numbers, T > 5 x lo4. The Nusselt number reached a maximum 
as the Taylor number increased for a given Rayleigh number. For mercury, 
unsteady subcritical instability existed for finite values of the Taylor number 
(0 < T < 1.8 x lo4),  which agrees with the results of Veronis. Finite amplitude 
overstability existed for a limited range of Taylor numbers: 1.8 x lo4 < T 6 lo5. 
For larger values of T (T > lo5) he found no subcritical instability but good 
agreement with linear overstability theory. The Nusselt number decreased mono- 
tonically as the Taylor number increased for a given Rayleigh number. The 
present asymptotic theory is again in accordance with Rossby’s results for steady 
convection. 

I would like t o  thank Professor P.H. Roberts, who introduced me to the 
problem and who gave many valuable suggestions. I am grateful to Mr R. 
Eveleigh for the computing carried out by him. 
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